[1] Find the volume bounded by $x^{2}+y^{2}=z$ and $x^{2}+y^{2}+z=4$
[2]Find the integral $\int_{(0,0)}^{(1,2)}(2 x+y) d y+\left(2 y+x^{2}\right) d x$, through (i) $y=2 x \quad$ (ii) $y^{2}=4 x$
[3]Verify Green's theorem for the integral: $\oint_{C}(x+y) d x+(3 x-y) d y$
where C is formed by $(\mathrm{x}-1)^{2}+\mathrm{y}^{2}=1$ and $\mathrm{y}=\mathrm{x}$
[4]From the data $(1,2),(3,4),(4,10),(5,8)$:
(a)Find the exponential curve that fits the data and find $y^{`}$ at $x=1$.
(b)Write the table of differences of the data and obtain the value of y at $\mathrm{x}=0$.

